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Abstract 
We emphasise the benefits of viewing the output of any numerical model as a conditional 
prediction.  More specifically, this is a view that the characterisation and communication of 
model context warrants as much attention as the technical description of the model problem 
and solution. Drawing on modelling examples from physical, ecological and social systems, 
we explore the potential benefits of adopting this practice more widely and more explicitly in 
modelling domains where the conditional nature of the models is not often emphasised. Given 
the growing reliance on numerical models, particularlyin informing policies for natural 
resource management, we suggest the ‘Modelling = Conditional Prediction’ perspective offers 
a useful lens through which to view the results of these models.  It is a view which provides 
clarity about the role of modelling within the larger research scope and can facilitate 
communication between model users from different disciplines. 
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1 Introduction 
It is increasingly common for teams of scientists and practitioners to address problems which 
encompass physical, ecological and social aspects. Often numerical models are used as tools 
in the approach, either as individual components or as an avenue to link the knowledge 
residing in the multi-disciplinary team.  

These large, often complex problems face several challenges, including finding a common 
framework for discussion among specialists in different disciplines who may hold different 
assumptions and expectations.  We have witnessed several such discussions and realised that 
a shared common understanding is not readily available even in dealing with numerical 
models: different groups, and often different individuals within the same group, may have a 
different idea of what a numerical model provides and how its output should be interpreted. 
Questions such as whether a numerical model represents a simulation of reality, a virtual 
laboratory, a platform to test a researcher’s idea or simply an avenue for communication and 
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education need to be addressed before multiple teams can work with the same model or 
before multiple models may be used effectively within the same project. Similarly, the 
question whether a model outcome represents a prediction of possible future events, the 
testing of a scenario or simply a tool to generate stakeholder feedback needs to be addressed 
before such outputs can be shared and used, for example, as input for other models or for 
decision making. This issue is of particular relevance as there is no consensus on theoretical 
approaches to the role of models in science; for a discussion see (Morgan and Morrison, 1999; 
Barreteau et al., 2003; Aumann, 2007).  

The purpose of this work is to propose a framework which may contribute to a shared 
understanding; it interprets the output of a computer model as a conditional prediction, that is 
a prediction which depends crucially on the conditioning (assumptions) imposed or implicit in 
the model as well as on the purpose of the model in the context of the problem at hand.   

This framework is based on three concepts: first, a computer model implements a set of rules; 
second, a comparison between the output of a model and real phenomena needs to be possible 
(at least conceptually); third, the input, output and logical steps in the computer code need to 
find an interpretation in the real world for the exercise to have a meaning, this last step being 
very different for different disciplines and imposing an increasing number of approximations 
going from physical to ecological and social problems.       

Rather than adopting a technical definition of prediction, in this work we prefer to conform to 
a broad everyday meaning: a prediction is an act of anticipating consequences of a process, an 
event or an interaction by formulating an expectation of what may happen. In practice, for 
most problems this means being able to anticipate limits on the expected system behaviour 
rather than exact system trajectories, and the reliability of a prediction is commonly 
understood to be scale-dependent. For example, while it is widely known that weather 
forecasts are not reliable past 5-6 days, no one would believe that the temperature in Tucson, 
Arizona, in August could be 40○C or -40○C with equal probability; as a result no one would 
travel to Tucson in August with a ski jumper. The same reasoning applies to most systems for 
which predictability depends on time scales and resolution (Israeli and Goldenfeld, 2004).  

Our main argument is that any prediction is carried out within a context and that the context is 
given by the conditioning of the prediction. In the above example, the conditioning is given 
by our understanding of the current status of the global atmospheric circulation; should this 
status change, the prediction would no longer hold and would require updating.  

In the rest of this document we will discuss in more detail why it is a useful discipline to 
interpret a model output as a prediction, why this prediction is conditional and why the 
explicit acknowledgement of this conditioning is essential. We will give examples of 
conditioning in modelling exercises of differing complexity and subjectivity and conclude by 
explaining why we believe this framework is a useful avenue for communication between 
modellers of different backgrounds. 

Before proceeding, some further clarifications are useful in order to define the scope of this 
work. First, we focus on the conditioning on the prediction of a model, not on the possible 
conditioning on the model; in other words, we assume that a model is available, it has been 
already chosen according to meaningful criteria and is appropriate for the problem at hand. 
Second, we limit our discussion to numerical models, either as algorithms written in a 
computer program or as closed form mathematical equations which can be solved 
analytically; while some of our arguments could be extended to non computational models, 
for sake of clarity we do not address them in this paper. Third, we are mostly concerned with 
the use of fairly complex, ‘large’ numerical models, such as the types of models commonly 



employed in real world engineering, ecological, economical and management problems. Once 
again, while some of our arguments could be extended to any kind of numerical model, 
fundamental issues related to the general applicability of models to natural phenomena and 
their ability to discriminate and represent effective causation are widely addressed in the 
philosophy of science literature, to which we refer the reader. Our concern is to project these 
issues into the realm of the modelling practitioner and researcher, clarify them by examples 
and highlight the relevance to real world applications and the ethical issues they arise.  

2 Why prediction 
 
Pragmatically, numerical modelling appears to be a relatively simple endeavour: we represent 
our understanding of a process in a computer program, we choose a suitable input, we run the 
code on some test cases and if the results are consistent with observations we extend the use 
of the code to explore other situations.  

Theoretically, modelling of any kind poses questions at the core of the philosophy of science, 
since building working (mental or logic) models of reality is part of the foundation of science. 
When the problem we try to address via modelling is complex, these arcane philosophical 
questions acquire practical relevance: the authors have witnessed several times modellers of 
different disciplines and backgrounds come together and find it difficult even to agree on 
what modelling is for, let alone what it is.  What may be obvious to a physical scientist is not 
to an ecologist nor to a social scientist and vice versa. This makes building interdisciplinary 
models which address problems spanning physical, biological and social fields very difficult. 

We do not address these philosophical problems here; rather we focus on the notion that the 
output of numerical models of any process need to be able to be interpreted as a prediction in 
order to be relevant to the scientific method.  

We restrict this discussion to models which are computer programs or closed form 
mathematical equations1. A computer program, as well as an equation, is a closed system to 
which the rules of formal logic apply: it takes an input and manipulates it via the set of 
transformation rules coded in the algorithm. The output of the model is a logical consequence 
of, thus equivalent to, the input given the rules of the algorithm (Boschetti et al., 2008). 
Consequently, technically it does not contain any information not already coded in the input 
and the rule set. Within this framework, the output of a model is not a prediction but rather a 
logic inference. Note that in this framework there is no link between the model and the real 
world. 

In practice, a model output is informative because the modeller often is not able to infer all 
the possible consequences of the rule set. Within this framework, the output of a model can 
help the modeller to learn and to develop intuition by playing out different rule sets and initial 
conditions and exploring their consequences. Here, the only link between the model and the 
real world lies within the modeller; that is in the effort to infer the working of the model. 
                                                 
1 A claim is occasionally encountered in the complex system literature according to which purely computational 
models are potentially able to simulate the action of ‘primitive’ elements of the process under analysis, while 
closed form equation (often in the form of differential equations) are better suited to model ‘emergent’ larger 
scale behaviours, which are insensitive to the details of the lower level processes. For example, the law of 
perfect gas described in Section 4.1 can be seen as emerging from the interaction of many randomly-moving 
point particles, whose individual interaction could be modelled as primitives in a cellular automaton. For our 
discussion, both computational models and closed form equations are example of algorithms, that is, set of 
instructions which can be followed mechanically once suitable initial conditions are defined. As a result our 
discussion applies unaltered to both.   



Despite the weak link, prediction already appears in the picture as the process of discovering 
or learning involves a form of comparison between prior and newly informed understandings.  

If the purpose of the model is to mimic a dynamical process or to represent correlations 
between data, the link between the model and the real world becomes much stronger: the 
input needs to have some resemblance with the initial conditions of the process and the rules 
need to have some relation to the process or to observed correlations. Since a perfect 
knowledge of Nature’s working can not be achieved, the resemblance between the rules and 
the process in Nature can be accessed only experimentally by matching the model output to 
the observations or, to be stricter, by trying to falsify the relation. This imposed relation 
between the model and the real world turns the model outcome into a prediction. Notice also 
that the outcome of the model here has the same logic role as the outcome of a theory (indeed 
they are logically equivalent (Boschetti and Gray, 2007)).  

Obviously not all models need to predict: a video-game is a model whose purpose is to create 
settings which may or may not resemble reality; but the aim of the video-game is to entertain 
not to do science. Similarly, symbolic equation solvers do not carry out predictions, rather 
they perform logical transformations so that equations can be expressed in alternative ways. 
Since the determination to winnow out belief and confront hypotheses with data are key 
features which sets science apart from other forms of human knowledge (Hilborn and Mangel, 
1997; Bradbury, 1999), we suggest that only models that generate predictions are amenable to 
scientific enquiry.  

To conclude, we do not claim that the purpose of a model needs necessarily to be to perform a 
prediction, rather that for a model to be used within a scientific framework – even if its 
purpose is one of ‘intuition pumping’ or learning – it is a useful discipline to interpret each 
model realisation as a conditional prediction. Doing so sets up the model realisations as 
hypotheses amenable to confrontation with data and it provides clarity for assessing whether 
the model is appropriate for the purpose assigned to it. This step is essential also when the 
purpose of a model is to suggest some explanatory hypotheses as in the case of the ability of 
to explain past events or capture likely past causal relations, since the reliability of the 
explanation of the past cannot be assessed independently of the ability of predict the future; 
for a discussion on the relation between prediction and retrodiction see (Ellison et al., 2009).    

 

3 Why conditional 
As discussed above, the output of a model is a logical consequence of the model input and the 
rule set. The output depends on the model input and rule set and thus is conditional on them. 
This conditioning is so strong it represents a logical tautology (Boschetti and Gray, 2007).  

To present some practical examples and discuss the implication for the use of modelling in 
real world problems, we find it convenient to distinguish several types of conditions: 

• from the model perspective, we define hard conditioning as conditions explicitly 
coded in the input or in the rule set. We define soft conditioning, as the human 
interpretation of the hard conditioning within the context of the modelling exercise; 

• from the modeller’s perspective, the conditioning can be explicit or implicit, 
depending on whether the modeller is aware of this conditioning while using or 
implementing  model.  

 
This classification is not unique and different schemes may be considered; it is used here 
merely out of convenience in order to describe a number of possible scenarios which we 
addressed below.  



3.1 Hard conditioning 
Hard conditioning is imposed directly in the input or in the rule set (following the discussion 
above, this can be interpreted as a logic conditioning). As an example, setting the parameter 
for the growth rate of phytoplankton in an ecological model represents a hard conditioning in 
the working of the model, because it determines the exact numerical result of the model. 
Similarly, approximating a missing data point via a spline interpolation assumes continuity 
and differentiability in the data distribution. If the user has provided the growth parameter or 
coded the spline interpolation, we assume (s)he is also aware of its use and these are examples 
of explicit conditioning.  

Let’s now assume that the algorithm performs a Fourier transform in its inner working. This 
imposes further conditions in the assumption of periodic and infinite data replication past the 
calculation domain as well as analytical continuity between samples. The user may not be 
aware of the presence of the Fourier transform in the code. Alternatively, (s)he may not be 
aware of the assumptions behind the use of the Fourier transform. In these cases we say that 
the conditioning is implicit: the user will run the model without being aware of these hidden 
hard assumptions. 

3.2 Soft conditioning 
Let’s refer to the above example of setting a parameter for the growth rate of phytoplankton in 
an ecological model.  Beyond the precise numerical estimate, a value may hold a certain 
meaning in a specific discipline: for example, a specific phytoplankton growth rate may imply 
a range of temperatures characteristic of a tropical environment. This can be interpreted as a 
soft constraint: using a precise numerical value for phytoplankton growth rate imposes a soft 
conditioning on the kind of scenario modelled (e.g. it may not be appropriate for modelling 
phytoplankton growth in polar conditions). Modellers often need to perform this interpretation 
step: in order to run a model, they may need to input the precise numerical value of 
parameters they are unable to measure, they have no indirect observation or may be 
impossible to observe even in principle; in this case they may resort to tables of commonly 
used parameters representative of the broad scenario the model is applied to (for example, 
expected phytoplankton growth rate for polar, temperate or tropical environments). Clearly 
the same conditioning can thus be interpreted as hard or soft depending on the context and 
expected accuracy of the simulation.  

The user may or may not be aware of the implication of the input or rule set in terms of soft 
conditioning and thus this conditioning can also be either explicit or implicit.  

3.3 Implicit soft (hidden) conditioning 
Conditionings which are both soft and implicit may be troublesome since they are hidden 
from the user and often from the model developer as well; when made explicit, they may alter 
considerably the interpretation of a model result.  

One type of hidden conditioning may need to be addressed separately: it includes all the 
events we expect will not happen during the process under study. Implementing a computer 
program involves writing rules for processes we anticipate being relevant to the problem; 
rules for processes considered irrelevant are usually not coded. To give an example, global 
models of human greenhouse gas emissions and climate change include hidden assumptions 
such as the following: a massive meteorite will not hit and destroy most industrialised 
countries; a new pandemic will not decimate world population; or global political or terrorist 
unrest will not seriously impact global business cycles. The list can be endless and as fanciful 
and entertaining as we wish, but this aspect of modelling conditioning is a useful reminder of 
the constraints implicit in our assumptions (see also (Isham, 1995), pp 55-56).  



This type of conditioning broadly relates to what is defined as ceteris paribus clause in the 
philosophy of science, that is to all the factors which either we are not aware of, or we assume 
do not interfere with the process we study, or we assume are constant during the time of the 
analysis. This clause is essential in order to isolate the variables we want to study from the 
external environment and are the cornerstone of traditional scientific data collection and 
inference.  This issue is particularly relevant to the use of large numeral models because one 
of the tenets of complex system science lies exactly on discussing the applicability of the 
ceteris paribus clause (Ashby, 1956; Kauffman, 2000; Laughlin et al., 2000).  

Table 1 summarises the type of conditioning described above.  

Figure 1 summarises the framework we propose. On the right hand side we have a computer 
model; this is a closed structure implementing a logic system. It is made up of three 
components: the input, the computer code and the output. Notice that the distinction between 
input and computer code is in fact fairly arbitrary since any input could in principle be 
incorporated into the code as a parameter. In the picture we refer to them jointly as hard 
conditioning. On the left hand side we have the natural process we want to study. This has a 
very different nature from the model: first it is an open system and as a result can not be 
properly defined.  Second, input and output are simply two different states of a dynamics and 
acquire a special significance only in relation to the problem we address. Third, because the 
system is open, input and output themselves cannot be finitely defined, but only 
approximated.  The figure also includes the three steps we discussed above: in step 1 we 
merely have a formal system in which the input, rules and output are linked by logical 
inevitable consequences.  Step 2 provides the interpretation of the model in terms of a natural 
process, thus defining the meaning of the model and of its conditioning.  The transition from 
hard to soft conditioning often happens at this stage, via the use of problem-specific 
knowledge. Step 3 allows the interpretation of model output as a conditional prediction 
amenable to comparison with observations from the natural system. Note that although Figure 
1portrays input and output as system states at different times, our definition of prediction need 
not limit us only to models representing dynamics in time. For example, a model may predict 
what ocean pH will be when in equilibrium with a particular atmospheric concentration of 
carbon dioxide, and so not require any reference to dynamics in time. 

4 Some examples  
In this section we give some examples of conditioning by analysing different classes of 
problems and models used to address them: a closed physical problem, an open physical 
problem and a social problem. The different classes represent increasingly complex problems, 
where complexity is seen as departure from pure mechanistic behaviour, as discussed below. 
Since a computer program implements a purely mechanical process (Boschetti and Gray, 
2007), the different classes also represent an increasing gap between the dynamics occurring 
in the process and its representation in the model and thus imply an increasing amount of 
conditioning on the prediction carried out by the model.  Table 2 summarises this discussion 
by showing examples of conditioning which apply to the following different modelling cases. 

4.1 A closed physical system 

In high-school physics we learnt the relation T
V
nRP = . This relation can be coded easily into 

a computer program which outputs values of P given values assigned to the other variables. 
So far, our code simply carries out a computation, whose result is an inevitable consequence.  

Once we decide to interpret P as the pressure of a gas, V its volume, T its temperature, n its 
amount in moles and we assign the proper value to the constant R, then our code becomes a 



model of a natural process, and it allows us to predict the behaviour of a perfect gas. Now, 
and only now, the model has a relation to outside reality and we can attempt to verify whether 
this relation holds by testing its predictions against real data.  

Doing so shows us that the relation does not hold exactly. Apart from measurement errors, the 
behaviour of a real gas does not match the equation accurately: it is not a perfect gas. The 
prediction of the model is conditional on the gas behaving as a perfect gas and consequently 
the predictions carried out by the model are accurate only to the extent that the real gas 
approximates the assumed conditions; departure from this explicit condition will result in 
prediction errors.  

4.2 An open physical system 
Most of us are indirect users of numerical models, since most of us check the weather forecast 
and take some decision based upon it. Weather forecasts are carried out via extremely 
complex models which are conditioned not only on certain assumptions about atmospheric 
and oceanic circulation but also on a large amount of measurements: given similar physical 
settings, the more measurements are available the more accurate the forecast is likely to be.  

The general public has a fairly good understanding of the mechanics of these conditional 
forecasts: people understand that weather can be easier to predict under stable conditions and 
that tomorrow’s forecasts are more reliable than next week’s ones. Furthermore,  no one 
would take seriously forecasts not conditioned on real data.  The general public not only 
understands the uncertainty which is inherent in any prediction but, importantly, is able to 
make a decision by accounting for it (this is what we do when we decide whether or not to 
take an umbrella and whether or not to aim for a week-end destination given a weather 
forecast).  

From this perspective weather forecasts offer a very useful example of the framework we 
propose in this paper. The general public is accustomed to a) judging the weather forecast 
provided by a certain agency as more reliable that the one from another agency, supposedly 
because provided by (i.e. conditioned upon) better models, better data or better scientists, b) 
accepting the level of uncertainty on the forecast without dismissing its usefulness and c) 
making a decision based on the forecast as well as its uncertainty. We suggest this represents 
a useful analogue for the use of any numerical model: uncertainty and conditioning do not 
undermine the usefulness of a model, provided they are both fully understood.    

4.3 A social system 
It is becoming increasing common to model social behaviour via numerical modelling, agent 
based modelling and game theory being two popular examples. The purpose of these models 
usually is to study the consequences of decisions taken by individuals and how these lead to 
different patterns of group behaviour. Given the complexity of understanding human decision 
making from a psychological perspective and the effect of human relationships from a social 
perspective, it is natural to question the interpretation of the output of social models as firm 
predictions. To this we need to add the difficulty of collecting reliable input data (reliable 
conditioning), as well as to falsify the model outcome by comparison with characteristics seen 
in real social systems.  

Here is where the framework ‘modelling = conditional forecast’ is probably most useful, since 
it focuses our attention on the component which is weakest: the reliable conditioning. Model 
outcomes are of little validity if the input data has not been verified or justified. However, 
very often attention is focused mostly on the rule setting, that is on the algorithm, under the 
common criticism that no rule set can encompass all facets of human behaviour. The 
‘modelling = conditional forecast’ does not circumvent the problem, but suggests how to 



interpret it. In an agent based model, for example, an agent is an automaton following 
prescribed rules; as a result, the output of the model can reproduce only the features of human 
behaviour which can be encapsulated by rules. Human behaviours which are not 
characterisable by rules (e.g. some emotional responses, contradictory choices or moral 
decisions) cannot be accounted for in a model. An agent based model can then be seen as (at 
best) an approximation of what human processes would be if human behaviour was purely 
rule based. The model represents a projection of human processes into a sub-space of rule-
based behaviours, which we believe are only a subset of all behaviours available to humans.  
As discussed in the previous section, this does not undermine the usefulness of agent based 
models, provided their assumptions are understood, are reasonable for the problem at hand 
and the model output is interpreted within the context determined by the conditioning.  

5 Why is this useful 
Modellers with a background in information theory and Bayesian statistics may find the 
framework we propose trivial, so here we highlight why we believe this approach is useful.  

The main benefit, in our opinion, comes from imposing a certain discipline both in the 
modelling exercise and in the delivery of the results. First, accepting that any interpretation of 
model output is a prediction enforces an avenue for falsification and accountability. Both are 
inevitable steps in a scientific endeavour and too often modellers fall into the temptation to 
circumvent this responsibility.  

Second accepting that the prediction is conditional imposes the responsibility of making this 
conditioning explicit: delivering a modelling result without information on the underlying 
assumptions is equivalent to assuming the prediction is not conditional but inevitable, which 
modelling results rarely, if ever, are. 

Furthermore, seeing modelling as conditional prediction is beneficial because it highlights 
both similarities and differences among different modelling approaches. Analytical equation 
solving, numerical modelling of physical processes, numerical modelling of social and 
ecological processes all give results whose usefulness depends on the soundness of 
assumptions, data and rationale of the model.  

While we believe that physical processes and ecological/social process are fundamentally 
different, it is useful to remember that the numerical modelling of physical or 
ecological/social processes is logically equivalent. A numerical model is an algorithm, whose 
rules are given a priori. While it is not clear to what extent a physical open system can be 
modelled via a closed formal system, it is largely assumed that a social/ecological model can 
not be (Rosen, 2001). As discussed in Section 4.3, we suggested that modelling 
ecological/social processes implies treating them as physical processes, in which 
ecological/social units act as rule-following automata. The usefulness of such numerical 
modelling results then depends crucially on the meaning ascribed to them. This step, deciding 
what the results mean, is where difficulties arise. It requires a tangible path between model 
assumptions and model interpretation. In some systems (particularly physical systems) the 
system characteristics being modelled are often non-controversial and it is easy to agree on 
common metrics for assessing model worth. In ecological and social systems this step is more 
difficult and inherently more debateable, but necessary nevertheless. In both physical and 
living systems alike we suggest that the ‘modelling=conditional forecasting’ perspective 
provides a useful avenue to clarify this step. 

6 Who is a model for? User as further conditioning 
It is a fairly common practice for researchers to build models for others to run; indeed in 
many groups the word modeller refers to an expert in running specific models, rather than in 



developing them.  Given that the purpose of a model can not be coded, and that the results 
depend crucially on the assumptions in the code (some implicit and others hidden in remote, 
often undocumented and possibly even uncommented lines of code) there are obvious dangers 
in interpreting results (predictions) when the conditions they depend on are not fully 
transparent.  

It is in considering the relation between model developer and model user that we encounter 
the age-old debate of model simplification and how the ‘right’ level of simplification can be 
achieved. Occasionally a view is given that the ‘right’ level of simplification depends on the 
user, not on the problem. Whether this view is appropriate or not depends crucially on the 
purpose of the model, which, interestingly, is both user and problem dependent.  

Here we wish to place emphasis of two observations: first, an oversimplified model is a badly 
conditioned one; second, oversimplified results equate to badly conditioned predictions; third, 
the interpretation of badly conditioned predictions may lead to unfortunate decisions, which 
inevitably echoes Feynman’s famous “for a successful technology, reality must take 
precedence over public relations, for Nature can not be fooled”. It’s a plain acknowledgment 
that in many situations model accuracy is vitally important and this needs to take precedence 
over user-friendliness, convenience, lack of time or lack of funding. Among the many 
constraints on the path to well informed decision making we can list a) complexity of the 
problem, b) lack of data, c) lack of understanding, d) lack of time, will or money to 
investigate sufficiently.  Of all of them, the complexity of the problem is the one we have the 
least control on. If dismissing this complexity is done in the name of user-friendliness, this 
effectively equates to yet another conditioning in the model; prediction will depend upon it 
and it needs to be properly acknowledged at the delivery of the results.   

7 Conclusions 
Modellers are familiar with the constraints imposed on the quality of model results by the 
quality of input data and of the algorithm. In this work we propose that a set of further 
constraints should be accounted for on an equal basis. These constraints include the 
interpretation of the model meaning with respect to the system under analysis, plus the 
acknowledgment of other requirements during model development and use, such as user 
friendliness, simplicity and communicability of results. More importantly, we propose that all 
these constraints should be seen as conditioning on the output of a model, and the output itself 
viewed as a prediction (i.e. an expectation of what would happen if the conditions implied in 
the constraints did occur). These notions clarify the minimum requirements for modelling to 
be consistent with scientific method. Furthermore, making such conditioning explicit can 
facilitate discussion of the validity and meaning of a model when integrating modelling 
results with other knowledge to inform decision-making.  
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Table 1. Schematic summary of the combinations of hard vs soft and explicit vs implicit 

conditioning. 
Conditioning Hard Soft 

Explicit Expressed as a functional relation 
or in the input data; the user is 
aware of its existence and 
implications 

Implied in the interpretation of the hard 
conditioning; the user is aware of its 
meaning 

Implicit  Expressed as a functional relation 
or in the input data; the user is not  
aware of its existence or 
implications 

Implied in the interpretation of the hard 
conditioning or in the absence of 
possible processes; the user is not 
aware of the implications 

 
Table 2. Examples of hard, soft and hidden conditioning in the modelling examples discussed 
in this paper.   
Model Hard 

conditioning 
Soft conditioning Hidden conditioning 

Closed 
physical 
model (Perfect 
Gas Law) 

Input data 
and gas law 
equation 

Specific input data refer 
to STP 

Real gas assumed to be 
‘perfect’ 

Open physical 
model 
(weather 
forecast) 

Input data, 
specific 
physical 
equations 

Tropical vs Polar 
conditions, Winter vs 
Summer, etc 

Absence of large 
perturbation (no volcanic 
eruptions), no major 
suddenly human effect on 



climate, etc 
Social model 
(agent based 
modelling) 

Input data, 
rule-based 
behaviour 

Rules carry an 
interpretation, eg. 
economically rational, 
individual profit-
maximimising vs 
cooperative, etc.  

Human behaviour can be 
encapsulated by rules 

 
 

  



 
Figure 1. Schematic representation of the concept of conditional prediction and the relation 
between a model and the natural process under analysis.   
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